Tag Archives: cloud

owncloud vs pydio – more diy cloud storage

Last week I wrote a how-to on using Pydio as a front-end to a MooseFS distributed data storage cluster.

The big complaint I had while writing that was that I wanted to use ownCloud, but it doesn’t Just Work™ on CentOS 6*.

After finishing the tutorial, I decided to do some more digging – because ownCloud looks cool. And because it bugged me that it didn’t work on CentOS 6.

What I found is that ownCloud 8 doesn’t work on CentOS 6 (at least not easily).

The simple install guide and process really is about version 8, and the last one that can be speedy-installed is 7. And as everyone knows, major version releases often make major changes in how they work. This appears to be very much the case with ownCloud going from 7 to 8.

In fact, the two pages needed for installing ownCloud are so easy to follow, I see no reason to copy them here. It’s literally three shell commands followed by a web wizard. It’s almost too easy.

You need to have MySQL/MariaDB installed and ready to accept connections (or use SQLite) – make a database, user, and give the user perms on the db. And you need Apache installed and running (along with PHP – but yum will manage that for you).

If you’re going to use MooseFS (or any other similar tool) for your storage backend to ownCloud, be sure, too, to bind mount your MFS mount point back to the ownCloud data directory (by default it’s /var/www/html/owncloud/data). Note: you could start by using local storage for ownCloud, and only migrate to a distributed setup later.

Pros of Pydio

  • very little futzing needed to make it work with CentOS 6
  • very clean user management
  • very clean webui
  • light system requirements (doesn’t even require a database)

Pros of ownCloud

  • apps available for major mobile platforms (iOS, Android), desktop)
  • no futzing needed to work with CentOS 7
  • very clean user management
  • clean webui

Cons of Pydio

  • no interface except the webui

Cons of ownCloud

  • needs a database
  • heavier system requirements
  • doesn’t like CentOS 6

What about other cloud environments like Seafile? I like Seafile, too. Have it running, in fact. Would recommend it – though I think there are better options now than it (including ownCloud & Pydio).

*Why do I keep harping on the CentOS 6 vs 7 support / ease-of-use? Because CentOS / RHEL 7 is different from previous releases. I covered that it was different for the Blue Grass Linux User Group a few months ago. Yeah, I know I should be embracing the New Way™ of doing things – but like most people, I can be a technical curmudgeon (especially humorous when you consider I work in a field that is about not being curmudgeonly).

Guess this means I really need to dive into the new means of doing things (mostly the differences in how services are managed) – fortunately, the Fedora Project put together this handy cheatsheet. And Digital Ocean has a clew of tutorials on basic sysadmin things – one I used for this comparison was here.

why do i use digital ocean?

Besides the fact that I have a referral code, I think Digital Ocean has done a great job of making an accessible, affordable, cloud environment for folks (like me) to spin-up and -down servers for trying new things out.

You can’t beat an average of 55 seconds to get a new server.

There are other great hosting options out there. I know folks who work at and/or use Rackspace. And AWS. Or Chunk Host.

They all have their time and place, but for me, DO has been the best option for much of what I want to do.

Their API is simple and easily-accessed, billing is straight-forward, and you can make your own templates to deploy servers from. For example, I could make a template for MooseFS Chunk servers so I could just add new ones whenever I need them to the cluster.

And I can expand/contract servers as needed, too.

create your own clustered cloud storage system with moosefs and pydio

This started-off as a how-to on installing ownCloud. But their own installation procedures don’t work for the 8.0x release and CentOS 6.

Most of you know I’ve been interested in distributed / cloud storage for quite some time.

And that I find MooseFS to be fascinating. As of 2.0, MooseFS comes in two flavors – the Community Edition, and the Professional Edition. This how-to uses the CE flavor, but it’d work with the Pro version, too.

I started with the MooseFS install guide (pdf) and the Pydio quick start steps. And, as usual, I used Digital Ocean to host the cluster while I built it out. Of course, this will work with any hosting provider (even internal to your data center using something like Backblaze storage pods – I chose Digital Ocean because they have hourly pricing; Chunk Host is a “better” deal if you don’t care about hourly pricing). In many ways, this how-to is in response to my rather hackish (though quite functional) need to offer file storage in an otherwise-overloaded lab several years back. Make sure you have “private networking” (or equivalent) enabled for your VMs – don’t want to be sharing-out your MooseFS storage to just anyone 🙂

Also, as I’ve done in other how-tos on this blog, I’m using CentOS Linux for my distro of choice (because I’m an RHEL guy, and it shortens my learning curve).

With the introduction out of the way, here’s what I did – and what you can do, too:


  • spin-up at least 3 (4 would be better) systems (for purposes of the how-to, low-resource (512M RAM, 20G storage) machines were used; use the biggest [storage] machines you can for Chunk Servers, and the biggest [RAM] machine(s) you can for the Master(s))
    • 1 for the MooseFS Master Server (if using Pro, you want at least 2)
    • (1 or more for metaloggers – only for the Community edition, and not required)
    • 2+ for MooseFS Chunk Servers (minimum required to ensure data is available in the event of a Chunk failure)
    • 1 for ownCloud (while this might be able to co-reside with the MooseFS Master – this tutorial uses a fully-separate / tiered approach)
  • make sure the servers are either all in the same data center, or that you’re not paying for inter-DC traffic
  • make sure you have “private networking” (or equivalent) enabled so you do not share your MooseFS mounts to the world
  • make sure you have some swap space on every server (may not matter, but I prefer “safe” to “sorry”) – I covered how to do this in the etherpad tutorial

MooseFS Master

  • install MooseFS master
    • curl “http://ppa.moosefs.com/RPM-GPG-KEY-MooseFS” > /etc/pki/rpm-gpg/RPM-GPG-KEY-MooseFS && curl “http://ppa.moosefs.com/MooseFS-stable-rhsysv.repo” > /etc/yum.repos.d/MooseFS.repo && yum -y install moosefs-master moosefs-cli
  • make changes to /etc/mfs/mfsexports.cfg
    • # Allow everything but “meta”.
    • #* / rw,alldirs,maproot=0
    • / rw,alldirs,maproot=0
  • add hostname entry to /etc/hosts
    • mfsmaster
  • start master
    • service moosefs-master start
  • see how much space is available to you (none to start)
    • mfscli -SIN

MooseFS Chunk(s)

  • install MooseFS chunk
    • curl “http://ppa.moosefs.com/RPM-GPG-KEY-MooseFS” > /etc/pki/rpm-gpg/RPM-GPG-KEY-MooseFS && curl “http://ppa.moosefs.com/MooseFS-stable-rhsysv.repo” > /etc/yum.repos.d/MooseFS.repo && yum -y install moosefs-chunkserver
  • add the mfsmaster line from previous steps to /etc/hosts
    • cat >> /etc/hosts
    • mfsmaster
    • <ctrl>-d
  • make your share directory
    • mkdir /mnt/mfschunks
  • add your freshly-made directory to the end of /etc/mfshdd.cfg, with a size you want to share
    • /mnt/mfschunks 15GiB
  • start the chunk
    • service moosefs-chunkserver start
  • on the MooseFS master, make sure your new space has become available
    • mfscli -SIN
  • repeat for as many chunks as you want to have

Pydio / MooseFS Client

  • install MooseFS client
    • curl “http://ppa.moosefs.com/RPM-GPG-KEY-MooseFS” > /etc/pki/rpm-gpg/RPM-GPG-KEY-MooseFS && curl “http://ppa.moosefs.com/MooseFS-stable-rhsysv.repo” > /etc/yum.repos.d/MooseFS.repo && yum -y install moosefs-client
  • add the mfsmaster line from previous steps to /etc/hosts
    • cat >> /etc/hosts
    • mfsmaster
    • <ctrl>-d
  • mount MooseFS share somewhere where Pydio will be able to get to it later (we’ll use a bind mount for that in a while)
    • mfsmount /mnt/mfs -H mfsmaster
  • install Apache and PHP
    • yum -y install httpd
    • yum -y install php-common
      • you need more than this, and hopefully Apache grabs it for you – I installed Nginx then uninstalled it, which brought-in all the PHP stuff I needed (and probably stuff I didn’t)
  • modify php.ini to support large files (Pydio is exclusively a webapp for now)
    • memory_limit = 384M
    • post_max_size = 256M
    • upload_max_filesize = 200M
  • grab Pydio
    • you can use either the yum method, or the manual – I picked manual
    • curl http://hivelocity.dl.sourceforge.net/project/ajaxplorer/pydio/stable-channel/6.0.6/pydio-core-6.0.6.tar.gz
      • URL correct as of publish date of this blog post
  • extract Pydio tgz to /var/www/html
  • move everything in /var/www/html/data to /mnt/moosefs
  • bind mount /mnt/moosefs to /var/www/html/data
    • mount –bind /mnt/moosefs /var/www/html/data
  • set ownership of all Pydio files to apache:apache
    • cd /var/www/html && chown -R apache:apache *
    • note – this will give an error such as the following screen:
    • Screen Shot 2015-04-20 at 16.32.48this is “ok” – but don’t leave it like this (good enough for a how-to, not production)
  • start Pydio wizard
  • fill-in forms as they say they should be (admin, etc)
    • I picked “No DB” for this tutorial – you should use a database if you want to roll this out “for real”
  • login and starting using it

Screen Shot 2015-04-20 at 17.07.51

Now what?

Why would you want to do this? Maybe you need an in-house shared/shareable storage environment for your company / organization / school / etc. Maybe you’re just a geek who likes to play with new things. Or maybe you want to get into the reselling business, and being able to offer a redundant, clustered, cloud, on-demand type storage service is something you, or your customers, would find profitable.

Caveats of the above how-to:

  • nothing about this example is “production-level” in any manner (I used Digital Ocean droplets at the very small end of the spectrum (512M memory, 20G storage, 1 CPU))
    • there is a [somewhat outdated] sizing guide for ownCloud (pdf) that shows just how much it wants for resources in anything other than a toy deployment
    • Pydio is pretty light on its basic requirements – which also helped this how-to out
    • while MooseFS is leaner when it comes to system requirements, it still shouldn’t be nerfed by being stuck on small machines
  • you shouldn’t be managing hostnames via /etc/hosts – you should be using DNS
    • DNS settings are far more than I wanted to deal with in this tutorial
  • security has, intentionally, been ignored in this how-to
    • just like verifying your inputs is ignored in the vast majority of programming classes, I ignored security considerations (other than putting the MooseFS servers on non-public-facing IPs)
    • don’t be dumb about security – it’s a real issue, and one you need to plan-in from the very start
      • DO encrypt your file systems
      • DO ensure your passwords are complex (and used rarely)
      • DO use key-based authentication wherever possible
      • DON’T be naive
  • you should be on the mailing list for MooseFS and Pydio forum.
    • the communities are excellent, and have been extremely helpful to me, even as a lurker
  • I cannot answer more than basic questions about any of the tools used herein
  • why I picked what I picked and did it the way I did
    • I picked MooseFS because it seems the easiest to run
    • I picked Pydio because the ownCloud docs were borked for the 8.0x release on CentOS 6 – and it seems better than alternatives I could find (Seafile, etc) for this tutorial
    • I wanted to use ownCloud because it has clients for everywhere (iOS, Android, web, etc)
    • I have no affiliation with either MooseFS or Pydio beyond thinking they’re cool
    • I like learning new things and showing them off to others

Final thoughts

Please go make this better and show-off what you did that was smarter, more efficient, cheaper, faster, etc. Turn it into something you could deploy as an AMID on AWS. Or Docker containers. Or something I couldn’t imagine. Everything on this site is licensed under the CC BY 3.0 – have fun with what you find, make it awesomer, and then tell everyone else about it.

I think I’ll give LizardFS a try next time – their architecture is, diagrammatically, identical to the “pro” edition of MooseFS. And it’d be fun to have experience with more than one solution.

#moosefs @smartfile – distributed, redundant file management (#olf2013 talk)

As promised, some follow-up to OLF.

Chris from SmartFile gave a great talk at OLF this year on MooseFS and how SmartFile leverages it to handle their rapidly-growing storage infrastructure.

Specifically, he compared it to Ceph and GlusterFS.

In short, MooseFS provides better configurability than either Ceph or GlusterFS, runs with lower overhead, and provides more flexibility for their environment.

One of the other cool things Chris said was they adopted the BackBlaze StoragePod design for their “green monster” storage units. Nice to see open source being leveraged not just in software, but hardware, too 🙂

after “the cloud”

Cloud computing has been hyped for the last decade+.

For those few of you haven’t heard of it and understand it, cloud computing is a computing-as-a-utility concept wherein compute (and storage) happens on systems which you may not own. That’s it.

So – now that we’ve been offloading our storage, computing, and other tasks to others in an on-demand manner, what is next?

When computing started, it was centralized, you worked on terminals (that communicated right back to the central machine), and did not “own” any of the work at your local work station.

Then we moved into the PC era where computing was done locally, and we only saved data to a server if “we wanted to be backed up”.

Now we’re moving back into a centralized (and distributed at the same time) computing environment where we can access the same document on our iPad and laptop and twelve other people can see it at the same time, too (eg Google Docs).

We are moving more and more toward ubiquitous computing – smartphones, tablets, laptops, PCs, servers, cars, everything we own is becoming computing-aware (also related: the “internet of things“).

What’s going to come after the cloud hype dies out and we’re back to “business as usual”? Well, other than some as-yet-unnamed term becoming the hot topic du jour – nothing. Computing hasn’t changed in the last 50 years except to become faster, smaller, and more prevalent.

Where computing happens will always depend on the given job at hand – we will centralize when it makes sense, we will distribute when it makes sense, and we will localize when it makes sense.

The real concern for the next decade is data security and integrity. It doesn’t matter where you store your data, or how you process it: if you cannot rely on its accuracy, integrity, and safety, it’s just so much noise.

If you can’t access it when you want need, you’ve already lost.

p2p cloud storage

I have yet to find a peer-to-peer file storage system.

You’d think that with all the p2p and cloud services out there, there’d be a way of dropping files into a virtual folder and having them show up around the network (encrypted, of course) – replicated on some kinda of RAID-over-WAN methodology.

I’m thinking Cryptonomicon’s data haven, but done on the cheap (and not in a dedicated place like the Sultanate of Kinakuta).

I’d use it if it were built.